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Abstract

There has been a lot of recent evidence that reasoning models that produce a
Chain-of-thought perform better on multi-step reasoning. We investigate how
far a distilled 8-billion-parameter reasoning model—DeepSeek-R1-Distill-Llama-
8B—can be pushed toward expert-level medical problem solving. Our pipeline
applies supervised fine-tuning (SFT) with QLoRA on 20 k Medical-o1-Reasoning
questions, each paired with CoT traces and answers. Extensive SFT ablations reveal
that reasoning models are extremely prone to overfitting: reducing the learning
rate to 1e-6, trimming training to a single epoch, and lowering weight decay to
1e-2 are necessary to maintain CoT quality while improving task accuracy. On
MedQA, MedMCQA, and PubMedQA benchmarks the best SFT model closes
roughly half the gap between the distilled base and HuatuoGPT-o1-8B (which uses
both SFT and RL), achieving accuracies of 0.498 – 0.563 and showing strong gains
in pass@k as k increases, indicating good search ability but weaker answer ranking.
The results provide concrete hyper-parameter guidelines for fine-tuning distilled
reasoning models in low-resource settings.

1 Introduction

1.1 Background

Supervised Fine-Tuning (SFT) is a modern machine learning technique that enables pre-trained
models to adapt for specific domains. By further training, or fine-tuning, large language models
(LLMs) on curated datasets, SFT helps models learn how to complete specific tasks aligned to human
expectations. This approach is especially valuable for smaller LLMs, giving them unprecedented
capabilities with limited computational resources. (1)

Reinforcement Learning (RL) is another machine learning technique that focuses on training agents
by allowing them to perform actions in their environment to maximize a certain reward. In the context
of LLMs, RL is often used after SFT to further align model outputs. This is done by defining a reward
function and optimizing the model’s responses to maximize this function. (2)

HuatuoGPT-o1 is a medical reasoning LLM trained using a two-stage approach. In Stage 1, the model
learns complex reasoning from generated Chain-of-Thought (CoT) trajectories for verifiable medical
questions. These trajectories are improved iteratively using strategy-based search techniques—such as
backtracking, exploring new paths, verification, and correction—until the model’s answer is verified
as correct. The reasoning chains are used for SFT, teaching the model to "think before answering." In
Stage 2, the model’s reasoning ability is further refined with RL. This two-stage method results in
strong performance on multiple medical benchmarks and highlights the benefits of this two stage
approach. (3)

DeepSeek-R1 stands out for its reasoning capabilities on par with OpenAI’s o1 model with low
running costs, making it a cost effective alternative for complex reasoning. To make its capabilities
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more accessible, the authors distill DeepSeek-R1 into a series of smaller models. Distillation is
performed by performing SFT on samples generated by DeepSeek-R1, comprising of reasoning and
general instruction-following tasks. This approach transfers the reasoning patterns of the larger model
into compact models without additional RL. The 8B Llama-distilled model in particular strikes a
strong balance between performance and efficiency, making it an ideal foundation for domain-specific
fine-tuning. (4)

Low-Rank Adaptation (LoRA) is a standard fine-tuning technique. This method emerged due to
the huge memory requirements of standard fine-tuning. Loading the entire model into memory was
difficult and often required multiple GPUs. LoRA mitigates this problem by freezing all layers except
one and fine-tuning only that layer at a time. It achieves this by tracking the necessary weight changes
using a Low-Rank Approximation, significantly reducing memory usage. This process is repeated
layer by layer until the user determines that the fine-tuning is sufficient. (5)

QLoRA builds on standard LoRA by introducing quantization to dramatically reduce memory usage
during fine-tuning. Instead of updating full-precision (e.g. 16-bit) weights, QLoRA quantizes the
pretrained model’s weights to 4-bit precision using a novel scheme (NF4) that is optimal for normally
distributed weights. It then backpropagates gradients only through the LoRA adapters while keeping
the quantized weights frozen, and further employs techniques like Double Quantization and paged
optimizers to manage memory spikes. This enables efficient finetuning of massive models (e.g.
65B or 70B parameters) on a single GPU without sacrificing performance compared to full 16-bit
finetuning.(6)

Chain-of-thought (CoT) significantly improves the ability of large language models to perform
complex reasoning. Using CoT aids the language models in decomposing a problem in smaller
intermediate steps, mimicking human problem-solving strategies.This structured decomposition
improves performance in multi-step reasoning tasks. By explicitly guiding the language model to
generate intermediate steps before arriving at a final answer. CoT mitigates errors that arise from
solely arriving from shallow heuristics. (7)(8)(9)

1.2 Motivation

This work aims to efficiently develop a more effective medical reasoning language model by fine-
tuning the 8B DeepSeek Llama-distilled model, utilizing techniques similar to those proposed by
Chen and colleagues. Given the distilled model’s strong reasoning capabilities, we hypothesize that
domain-specific fine-tuning will yield substantial improvements in medical reasoning performance.

2 Methods

This project will experiment with fine tuning DeepSeek-R1-Distill-Llama-8B with QLoRA.
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Figure 1: Training pipeline

2.1 Datasets

Our training pipeline leverages two core datasets, along with an augmented SFT dataset, to guide
different stages of training.

SFT Dataset (20k samples)

• HuggingFace: FreedomIntelligence/medical-o1-reasoning-SFT
• Description: A subset of the verifiable medical problems, this dataset contains 20,000

entries where each example includes a question, a chain-of-thought (CoT) reasoning trace,
and the final answer generated (using GPT-4).

• Usage: This dataset is used for supervised fine-tuning (Stage 1) to teach the model the
desired "think-before-answering" style. The SFT data helps the model learn how to structure
a coherent reasoning process and produce a reliable final answer.

Verifiable Medical Problems (40k samples)

• HuggingFace: FreedomIntelligence/medical-o1-verifiable-problem
• Description: This dataset comprises 40,000 open-ended medical questions paired with their

objective, ground-truth answers. The problems have been carefully curated and reformatted
to enable automatic verification of the final answer via our medical verifier.

• Usage: The entire 40k dataset is reserved for the RL (Stage 2) phase. During RL, the
model’s generated chain-of-thought and final answers are evaluated against these ground
truths to provide reward signals, guiding the model toward improved reasoning accuracy.

2.2 Supervised Fine-Tuning

Large pretrained models are trained on vast amounts of general-purpose data, which equips them
with a wide range of reasoning skills. However, they don’t always perform optimally on specialized
tasks. Supervised fine-tuning (SFT) addresses this by narrowing the model’s distribution to better fit
a particular task (10). We wanted to adapt this technique, previously applied mainly to non-reasoning
LLMs, to reasoning models. For our first experiment, we fine-tuned on 20,000 samples from the
medical-o1-reasoning-SFT dataset for three epochs. But reasoning models exhibit subtle differences
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in how they react to fine-tuning (11), notably a much higher tendency to overfit, especially the smaller
ones (12). To counteract this, we lowered the learning rate, since prior work shows that smaller
learning rates can reduce overfitting and boost reasoning capabilities (13). We found that 1e-4 harmed
the model’s search ability, but 1e-6 delivered better results. Next, we reduced training to a single
epoch, which improved performance but did not fully eliminate overfitting. Finally, we decreased
weight decay to 1e-2, following evidence that a lower weight decay helps maintain chain-of-thought
structure and improves reasoning sensitivity (14). The ablations for all of these runs can be found in
Figure2.

Figure 2: Ablations for Supervised Fine-Tuning.

2.3 Reinforcement Learning

Policy gradient methods for RL have been widely used to fine-tune large language models, namely,
for their ability to define explicit objective functions. By directly optimizing for desired behavior
through rewards functions as opposed to relying on implicit learning from a human-annotated
dataset, these methods provide greater control over model behavior. Similarly to the HuatuoGPT-o1,
we plan to implement proximal preference optimization-based (PPO) (15) pipeline to fine-tune.
Compared to other policy gradient methods such as direct preference optimization (DPO) (16) and
trust region policy optimization (TRPO) (17), PPO offers greater stability in training by mitigating
how much a policy can change at each update via a clipped objective function. Most importantly,
PPO offers superior sampling efficiency as it maximizes learning from each collected data point.
This is particularly valuable in our case as data points must be created manually. We will focus on
PPO-Clip, a variant of PPO that does not have a KL-divergence term in the objective and instead
relies on specialized clipping in the objective function to remove incentives for the new policy to get
far from the old policy, as illustrated in Algorithm 1.
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Algorithm 1 PPO-Clip
1: Input: initial policy parameters θ0, initial value function parameters ϕ0

2: for k = 0, 1, 2, . . . do
3: Collect set of trajectories D = {Ti} by running policy πk = π(θk) in the environment.
4: Compute rewards-to-go R̂t.
5: Compute advantages estimates, Ât (using any method of advantage estimation) based on the

current value function Vϕk
.

6: Update the policy by maximizing the PPO-clip objective:

θk+1 = argmax
θ

1

|Dk|T
∑

T ∈Dk

T∑
t=0

min(
πθ(at|st)
πθk(at|st)

Aπθk (st, at), g(ϵ, A
πθk (st, at)),

typically via stochastic gradient ascent with Adam.
7: Fit value function by regression on mean-squared error:

ϕk+1 = argmax
θ

1

|Dk|T
∑

T ∈Dk

T∑
t=0

(Vθ(st)− R̂t)
2,

typically via stochastic gradient ascent algorithm.
8: end for

To further increase stability in the training and sampling efficiency, we will use generalized advantage
estimation (GAE) (15) to compute our advantage function. PPO relies on policy gradients to optimize
agent behavior, but using raw Monte Carle returns for advantage estimation can introduce high
variance, which can lead to unstable learning. On the other hand, using temporal difference methods
alone can reduce variance by often introducing bias. GAE strikes an optimal balance by smoothing
advantage estimates by reducing variance without adding too much bias. This can actually help
the clipping mechanism in PPO work more effectively by providing accurate advantage estimates,
allowing for more stable policy updates. A more detailed look in how the advantage function is being
calculated is illustrated in Equation 1.

[h]Â
GAE(γ,λ)
t := (1− λ)(Â

(1)
t + Â

(1)
t + Â

(1)
t + . . .)

= (1− λ)(δVt + λ(δVt + γδVt+1) + λ2(δVt + γδVt+1 + γ2δVt+2) + . . . )

= (1 + λ)(δVt (1 + λ+ λ2 + . . . ) + γδVt+1(λ+ λ2 + λ3 + . . . )

+ γ2δVt+2(λ
2 + λ3 + λ4. . . ) + . . . )

= (1− λ)(δVt (
1

1− λ
) + γδVt+1(

λ

1− λ
) + γ2δVt+2(

λ2

1− λ
) + . . . )

=

∞∑
l=0

(γλ)lδVt+l (1)

3 Evaluation

3.1 Metrics

Evaluation metrics were taken from the evaluation JSON file from the HuatuoGPT-o1 GitHub. The
table below explains the benchmarks used, along with how many questions were used for evaluation.
It is important to note that these are subsets of the original datasets. We used the HuatuoGPT-o1
evaluation datasets for consistency. For a more detail explanation of the specific content of each
dataset see Table1.
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Benchmark Description # Questions
MedQA The English subset of MedQA (USMLE) consists of

multiple-choice questions from U.S. medical board exams.
(18)

1,273

MedMCQA MedMCQA is a large-scale multiple-choice medical QA
from Indian medical entrance exams, designed to test a wide
range of reasoning skills across diverse healthcare topics.
(19)

4,183

PubMedQA PubMedQA is a biomedical question answering dataset
consisting of yes/no/maybe questions derived from PubMed
article titles. (20)

1,000

Table 1: Descriptions of medical QA benchmarks used in this study.

3.2 Main Results

For this section, we will be looking at the results of our fine-tuned distilled models only with SFT
implemented. To see the specific reason why see Section3.2.4

3.2.1 Accuracy

Using the MedQA, MedMCQA, and the PubMeqQA as our benchmarks, we can evaluate the
performance of our fine-tuned distilled models for basic answer questions, that is how many questions
the model when using only one inference.

Model MedMCQA MedQA PubMedQA
Llama-3.1-8B-Instruct 0.561 0.661 0.752
HuatuoGPT-o1-8B 0.626 0.750 0.787
DeepSeek-R1-Distill-Llama-8B 0.502 0.564 0.740
Fine-Tune-lr-1e-4 0.450 0.522 0.612
Fine-Tune-lr-1e-6 0.475 0.534 0.723
Fine-Tune-1-epoch 0.498 0.563 0.738
Fine-Tune-small-wd 0.454 0.548 0.736

Table 2: Model Accuracy on MedMCQA, MedQA, and PubMedQA

From Table2, we can see that our fine-tuned distilled models generally cluster around the similar
accuracy rate on three benchmarks. The performance on MedMCQA and MedQA shows a small
spread in accuracy, suggesting that the ablated components had limited impact on those datasets.
MedMCQA scores range from 0.450 to 0.498 (a spread of just 0.048), and MedQA from 0.522 to
0.563 (spread of 0.041), indicating consistent performance across ablation configurations.

In contrast, the performance on PubMedQA exhibits a much larger spread. Notably, Fine-Tune-
Ablation-1 significantly underperforms with a score of 0.612, which is 0.111 lower than the next worst-
performing model (Fine-Tune-Ablation-2 at 0.723). This sharp drop suggests that the component
removed in Ablation-1 plays a critical role in enabling strong performance on PubMedQA, potentially
due to the dataset’s emphasis on fact-based biomedical inference and document understanding.

3.2.2 pass@k

Using 100 random questions from MedQA as our benchmark we can also evaluate the performance
of our fine-tuned distilled models using a pass@k metric, which measures the probability that at least
one of k responses from a model for a given problem is correct (21). This will give further insight on
the model’s sampling ability to finding a given solution.
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Figure 3: Performance of the baseline and our models for k=1 to k=20 for the pass@k metric

From Figure3 we can see that as k increases our fine-tuned distilled models steadily improve,
eventually approaching the performance of HuatuoGPT-o1-8B model at higher k values (e.g., k=20).
This indicates that while our models are capable of identifying the correct answer within a broader
candidate set, they struggle to rank the correct answer highly, as evidenced by significantly lower
accuracy at k=1.

3.2.3 Reasoning Capabilties

As a general heuristic, we use the number of characters as a proxy for reasoning quality: more char-
acters typically indicate richer reasoning, while fewer characters suggest less developed reasoning.

Model MedMCQA MedQA PubMedQA
Llama-3.1-8B-Instruct 138.20 547.06 47.73
HuatuoGPT-o1-8B 1716.06 2133.94 1841.03
DeepSeek-R1-Distill-Llama-8B 4469.98 6332.74 2839.87
Fine-Tune-lr-1e-4 1978.88 2814.67 2340.64
Fine-Tune-lr-1e-6 3495.09 4927.42 2450.51
Fine-Tune-1-epoch 4256.13 6072.71 2677.13
Fine-Tune-small-wd 3482.43 4886.34 2463.43

Table 3: Average number of characters in model output for MedMCQA, MedQA, and PubMedQA

From Table3 model output lengths vary significantly across MedMCQA, MedQA, and PubMedQA,
with the DeepSeek-R1-Distill-Llama-8B model consistently generating the longest responses. In
contrast, the Llama-3.1-8B-Instruct model produces very short answers, suggesting it may lack detail
or thoroughness. Our models provide somewhat of a balance, with Fine-Tune-Ablation-3 yielding
outputs nearly as verbose as DeepSeek, indicating a potentially effective trade-off between brevity
and informativeness.
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3.2.4 Incomplete RL Results

For this project, we originally planned to recreate Chen et al’s SFT, then RL training pipeline.
However, because of difficulties deploying the pipeline on the PSC clusters and a delay in investigated
why the SFT results were not as strong as anticipated—especially given that Chen et al suggested
RL would only provide a modest 2% improvement. As a result, we concentrated our efforts on
investigating the underlying causes of the weak SFT performance, aiming to better understand the
factors contributing to the gap between our results and those reported by Chen et al before moving on
with experiments for the RL.

3.3 Qualitative Analysis

While achieving comparable performance on these general benchmarks may suggest a model’s overall
competence, selecting the correct answer on these tests does not necessary reflect true reasoning
ability within the medical domain. Many benchmarks rely on surface-level pattern recognition and
fail to capture the depth of understanding required for tasks like interpreting nuanced symptoms,
managing uncertainty, or synthesizing disparate clinical findings. In medicine, we care not just about
the correct answer, but whether it was reach through logical consistency, faithfulness to the data,
and often multi-step reasoning — the kind that mirrors expert clinical judgment. This disconnect
highlights the limitations of pure quantitative metrics and motivates a need for qualitative analysis.
Given these concerns, we will examine logical reasoning, faithful reasoning, and multi-hop reasoning
(22).

Logical Reasoning Logical reasoning is fundamental as it serves the bedrock for rational thinking,
robust problem-solving and interpretable decision-making (23; 24; 25). This is illustrated by the
chain-of-thought reasoning generated in our model’s output, which exhibits a clear reasoning pattern:
it evaluates each option step by step, compares hypotheses against known facts, eliminates inconsis-
tencies, and arrives at a justified conclusion — reflecting interpretable and structured decision-making.
However, this pattern of reasoning, while interpretable, can still go astray if the model’s underlying
knowledge is flawed or misapplied. For instance, it may follow a seemingly logical sequence of steps
but arrive at an incorrect answer due to false premises, overgeneralization, or failure to recognize
contextual nuances. A more detailed flow of this reasoning process can be found in Figure 4.

Figure 4: Chain-of-Thought. Model reasons itself into thinking a wrong answer is correct to arrive at
a wrong answer.

Faithful Reasoning Faithful reasoning is foundational as it ensures consistency with established
truths, integrity in interpretation, and trustworthiness in conclusions (26; 27; 28). This is illustrated
by the chain-of-thought reasoning generated in our model’s output, where it consistently aligns its
evaluation with established physiological principles, accurately interprets each option, and derives a
trustworthy conclusion. However, even faithful reasoning can falter if the model’s underlying infor-
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mation is misapplied. For example, if the model applies an inaccurate or incomplete understanding
of a concept, it may generate a conclusion that, while logically coherent, is ultimately untrustworthy.
A more detailed flow of this reasoning process can be found in Figure 5.

Figure 5: Chain-of-Thought. Model misapplies correct premise to arrive at wrong answer.

Multi-hop Reasoning Multi-hop reasoning is essential as it enables the integration of dispersed facts,
the construction of complex inferences, and the resolution of intricately layered queries (29; 30). This
is illustrated by the chain-of-thought reasoning generated in our model’s output, where it successfully
connects multiple pieces of information across different reasoning steps, building on each to form
a comprehensive and well-supported conclusion. However, even multi-hop reasoning can go awry
if any individual step is flawed or if the model fails to link relevant facts correctly. For example, a
mistake in one intermediate inference could lead to a faulty conclusion, disrupting the entire reasoning
process. A more detailed flow of this reasoning process can be found in Figure 6.

Figure 6: Chain-of-Thought. Model fails to correct synthesize correct premises to arrive at a wrong
answer.
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4 Conclusion

From our experiments, we can draw the following conclusion. SFT memorizes and RL generalizes.
This claim is supported by recent literature namely (31; 32; 33). SFT helps learn the sample space
and RL helps sample from this. We can see this through Figure 3 as starting pass@k performance
is poorer than the Huatuo-GPT-o1-8B a model that uses both SFT and RL. Our findings provide
further evidence for this trend, aligning with prior work and reinforcing the distinction between
memorization via SFT and generalization via RL.

5 Code Availability

Code can be found on GitHub: https://github.com/siddsabata/MR-DeepSeek
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N. Schiefer, O. Rausch, R. Larson, S. McCandlish, S. Kundu, S. Kadavath, S. Yang,
T. Henighan, T. Maxwell, T. Telleen-Lawton, T. Hume, Z. Hatfield-Dodds, J. Kaplan, J. Brauner,
S. R. Bowman, and E. Perez, “Measuring faithfulness in chain-of-thought reasoning,” 2023.
[Online]. Available: https://arxiv.org/abs/2307.13702

[28] Q. Lyu, S. Havaldar, A. Stein, L. Zhang, D. Rao, E. Wong, M. Apidianaki, and
C. Callison-Burch, “Faithful chain-of-thought reasoning,” 2023. [Online]. Available:
https://arxiv.org/abs/2301.13379

[29] J. Wang, J. Li, and H. Zhao, “Self-prompted chain-of-thought on large language models for
open-domain multi-hop reasoning,” 2023. [Online]. Available: https://arxiv.org/abs/2310.13552

[30] S. Yang, E. Gribovskaya, N. Kassner, M. Geva, and S. Riedel, “Do large language
models latently perform multi-hop reasoning?” 2024. [Online]. Available: https:
//arxiv.org/abs/2402.16837

[31] T. Q. Luong, X. Zhang, Z. Jie, P. Sun, X. Jin, and H. Li, “Reft: Reasoning with reinforced
fine-tuning,” 2024. [Online]. Available: https://arxiv.org/abs/2401.08967

[32] Y. Yue, Z. Chen, R. Lu, A. Zhao, Z. Wang, Y. Yue, S. Song, and G. Huang, “Does reinforcement
learning really incentivize reasoning capacity in llms beyond the base model?” 2025. [Online].
Available: https://arxiv.org/abs/2504.13837

[33] T. Chu, Y. Zhai, J. Yang, S. Tong, S. Xie, D. Schuurmans, Q. V. Le, S. Levine, and Y. Ma, “Sft
memorizes, rl generalizes: A comparative study of foundation model post-training,” 2025.
[Online]. Available: https://arxiv.org/abs/2501.17161

[34] G. Dong et al., “How Abilities in Large Language Models are Affected by Supervised
Fine-tuning Data Composition,” arXiv preprint arXiv:2310.05492, Jun. 2024. [Online].
Available: https://arxiv.org/abs/2310.05492

[35] “DeepSeek R1 Distill Llama 70B - Intelligence, Performance & Price Analysis | Artificial
Analysis.” [Online]. Available: https://artificialanalysis.ai/models/deepseek-r1-distill-llama-70b

[36] “Introducing Gemma 3: The most capable model you can run on a single GPU or TPU,” Mar.
2025. [Online]. Available: https://blog.google/technology/developers/gemma-3/

[37] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-Dimensional Continuous
Control Using Generalized Advantage Estimation,” Oct. 2018, arXiv:1506.02438 [cs]. [Online].
Available: http://arxiv.org/abs/1506.02438

12

https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2301.13379
https://arxiv.org/abs/2310.13552
https://arxiv.org/abs/2402.16837
https://arxiv.org/abs/2402.16837
https://arxiv.org/abs/2401.08967
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2310.05492
https://artificialanalysis.ai/models/deepseek-r1-distill-llama-70b
https://blog.google/technology/developers/gemma-3/
http://arxiv.org/abs/1506.02438

	Introduction
	Background
	Motivation

	Methods
	Datasets
	Supervised Fine-Tuning
	Reinforcement Learning

	Evaluation
	Metrics
	Main Results
	Accuracy
	pass@k
	Reasoning Capabilties
	Incomplete RL Results

	Qualitative Analysis

	Conclusion
	Code Availability

