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Abstract

Reconstructing tumor clonal phylogenies is vital for understanding intra-tumor heterogeneity, anticipating therapy
resistance, and advancing precision oncology. Traditional unsupervised model-based approaches infer evolutionary
trees from bulk sequencing data but are constrained by lengthy runtimes and instability when applied to sparse datasets.
Data-driven generative modeling offers an alternative by directly learning complex statistical distributions. Learning
distributions of tumor phylogenies enables greater generalizability and faster inference. This work explores the
mathematical feasibility of using generative discrete diffusion for phylogenetic reconstruction. We introduce DiPhy, an
adapted discrete graph diffusion model for unconditional phylogeny generation. We develop a synthetic training dataset
and train two 7.1 million parameter models on purely synthetic data, achieving 92.4% structurally valid graphs at test
time. This work serves as an initial step toward leveraging generative deep learning for fast, reliable tumor phylogeny
inference.

1 Introduction

Cancer is fundamentally driven by evolution: cell subpopulations, known as clones, within a tumor continuously acquire
mutations, leading to diverse subpopulations that influence treatment responses, disease progression, and metastasis.
Clones can be characterized by unique mutation profiles. Liquid biopsies, which detect tumor-derived circulating DNA
(ctDNA) in blood samples, offer a minimally invasive, low-cost method to monitor cancer progression [4][15]. While
they show great promise as a diagnostic tool, integrating noisy ctDNA data into accurate models of tumor evolution
remains challenging.

Using ctDNA in a longitudinal fashion to predict a patient’s cancer relapse has shown clinical promise [1]. The
recent Mase-phi framework builds on this idea by optimizing the selection of informative ctDNA markers (mutations)
through Bayesian inference and optimization, significantly reducing biomarker panel costs for understanding subclonal
dynamics [9]. The framework operates by first analyzing bulk sequencing reads from a high-resolution tissue biopsy
through a probabilistic model. This model reconstructs the tumor’s evolutionary history, termed a phylogeny, hundreds
of times to generate a distribution of possible phylogenies. These tissue-based phylogenies then serve as a Bayesian
prior. The framework subsequently incorporates lower-resolution longitudinal ctDNA bulk sequencing reads to update
this phylogenetic distribution and identify the most significant biomarkers.

Most phylogeny reconstruction, or deconvolution, methods rely on model based unsupervised machine learning
approaches, which often results in long and computationally expensive runtimes. This challenge is amplified when
these methods are bootstrapped, as in frameworks like Mase-phi. These models learn pre-defined parameters through
inference-time optimization. Different deconvolution methods have varying data requirements, with some utilizing
small nucleotide variations (SN'Vs), copy number alterations (CNAs), and single cell sequencing data [8][3]. While
incorporating multiple data modalities improves accuracy, it substantially increases clinical costs [11]. PhyloWGS
distinguishes itself from other methods by functioning solely on sparse amounts of SNV data, making it the method
of choice for Mase-phi [6]. However, because PhyloWGS is an unsupervised model based on Markov Chain Monte
Carlo (MCMC) sampling, processing a single SNV panel can require over eight hours on a supercomputing cluster.
Additionally, the stochastic nature of the model means that runs may occasionally fail.

Unconditional-diffusion models are a class of self-supervised deep generative models that excel at learning
complex statistical distributions [5]. They directly learn data distributions with neural networks through training-time
optimization. With roots in statistical physics, Denoising Diffusion Probabilistic Models (DDPMs) are powerful



generative models that have revolutionized the field of data synthesis, particularly in continuous domains like image
generation [10][18]. The fundamental concept behind DDPMs is to progressively add noise to real data points until
they become indistinguishable from random noise, and then train neural networks (called a denoiser) to reverse this
process, effectively learning the data distribution. Many consumer grade diffusion models, such as DALL-E and Stable
Diffusion, are conditional, meaning they generate samples given some kind of input (i.e text) [16][17]. Conditional
diffusion models are supervised machine learning algorithms, requiring clearly labeled training data. Guidance methods
help steer sampling given some input, while the denoiser models the data distribution. On top of learning complex data
distributions well, diffusion models are significantly faster at inference due to their training-time optimization; they do
not have to learn or optimize at test-time, but require labeled training data.

While creating a diffusion-based, end-to-end replacement for PhyloWGS is a massive undertaking, this work
explores the foundation of conditioning a diffusion model to generate biologically relevant graphical structures from
purely synthetic training data. This foundational work paves the way for further, larger-scale initiatives in dataset
creation, model development, and training strategies to eventually create a modernized, clinically viable tumor
deconvolution model.

2 Methods

We train DiPhy, a 7.1 million parameter graph diffusion model, on the task of unconditional phylogeny generation using
synthetic data. DiPhy is an extension of DiGress, a general discrete graph diffusion model, with a customized graph
encoding designed to be compatible with the raw simulated ground truth data. Figure 1 outlines the transformation of
simulator data into the graph representation used in this work.
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Figure 1: Understanding the dataset starting from raw simulator outputs to graph encoding. Phylogenies always
have a root node (gray) that represent normal cells within a tumor, then bold colored nodes that represent clones, or
tumor sub-populations. Because clones consist of multiple mutations (indicated as “Mut n”*), the Newick tree (middle)
contains multi-class nodes. These nodes indicate ancestry through the directed edges (black), meaning each child
contains all the mutations of the parent. We unravel the clones (right) with specific undirected mutation edges (light
gray) that connect to the corresponding clones, creating single class nodes. We also make the parental edges undirected
(black). These changes were made for simplicity and model compatibility.

2.1 Model Selection

DiGress extends the DDPM framework specifically to discrete graphs, like molecules [21]. The process involves
corrupting graph structures by progressively adding or removing nodes/edges and changing their categories, and
training a graph transformer-based denoiser to reverse the process. Graph transformers are an adaptation of traditional
transformer models, with the ability to learn neighborhood-level node/edge relationships instead of text relationships
[20][7]. This approach has achieved state-of-the-art results in molecular graph generation, demonstrating significant
improvements in generating valid graph structures even from extremely large datasets. This is significant because
DiGress has already demonstrated that diffusion models can efficiently capture and reconstruct complex graph topologies.
By adapting DiGress for unconditional generation of tumor phylogenies, we leverage the existing computational
architecture and proven efficacy, significantly reducing the complexity of our development and enhancing confidence in
our approach.



2.2 Simulator Selection

Training an unconditional generative version of DiGress requires only ground truth phylogenetic trees to which the
model can iteratively add and remove noise. In cancer genomics, large and accurately labeled datasets for training
models are notoriously hard to find. This challenge is particularly apparent for tumor phylogenies because generating a
ground truth phylogeny from patient data is impossible. Therefore, we must turn to simulated data [13][14]. SISTEM
addresses this challenge by providing realistic simulations of tumor dynamics [22]. This Python package simulates
tumor growth, metastasis, and DNA sequencing under genotype-driven selection. It works in a two step process: it
first simulates tumor growth until a minimum detectable population size is detected, providing a single compressed
metadata file. Then it simulates sampling cells, constructs a clonal lineage, and generates synthetic bulk read counts
based on input parameters. SISTEM also has the capability to generate single cell lineages and the associated data
in the second step from any generated tumor. Most importantly, this tool provides the exact training data necessary
for our approach: ground truth clone trees with paired bulk sequencing read counts. Both components are necessary
because the sequencing read counts contain the simulated mutations associated with each clone, which form a critical
element of the graph encoding. The read counts are not directly used for training in this work, but they are essential for
developing a conditional generative, supervised counterpart in future work. SISTEM provides a foundational resource
for training supervised models that can potentially be applied to real-world tumor data.

2.3 Synthetic Dataset

We generated a synthetic dataset of 1,967 tumor phylogenies for training. This dataset was generated by deploying
a Dockerized wrapper around SISTEM on Google Cloud and a local computer. We maximized compute resources
through parallel tumor generation and sampling steps in the SISTEM data generation application. The virtual machine
used in Google Cloud consisted of 24 vCPUs, 96GB memory, and 400GB of storage, while the local machine was
a 2024 MacBook Pro with an M4 Pro chip and 24GB of memory. Occasionally, SISTEM simulations terminated
prematurely when all simulated cells died out before the minimum detectable population size, reflecting the inherent
stochastic nature of the simulator. To account for this, we attempted to generate 800 unique tumors using identical
parameters (see Table 2) and resample each tumor three times, providing a theoretical dataset of 2,400 trees. Due to
the stochastic nature of SISTEM, a total of 728 unique tumors successfully generated, along with 1,967 successful
resamples. All data were moved to the local machine (MacBook Pro) to perform further processing. Key outputs
included Newick trees and tables representing clonal lineages and clone-mutation associations, respectively.

Once the phylogenies were obtained in Newick format, we converted them into a graph representation compatible
with DiGress. The model requires two one-hot encoded tensors: a node tensor X € R"™** and an edge tensor
E € R"*"xb where n is the number of nodes, a is the number of node classes, and b is the number of edge classes.
We designed a framework to encode phylogenies densely and efficiently perform one-hot encoding of the tensors in the
data loader using PyTorch.

2.4 Graph Encoding

Each graph with n nodes is represented by a node feature matrix X and an edge feature tensor £. The matrix X € R"
encodes categorical attributes for each node: normal root (0), tumor clone (1), or mutation event (2). The tensor
E € R™™™ is a symmetric square matrix whose nonzero entries denote edges: clone-clone connections (1) and
clone-mutation assignments (2). A label list L accompanies X, where index ¢ in L corresponds to index 7 in X and
to row/column ¢ in F, storing human-readable node names. This representation meets DiGress’s requirement that
each node belongs to a single class while preserving mutation and clonal relationships. The dense encoding facilitates
efficient one-hot encoding of tensors as required by DiGress. All training graphs were stored as a list of dictionaries,
each containing a unique tree identifier and its associated tensors X, F, and L. Only X and E are directly used for
training.

2.5 Model Engineering

We implemented a customized data loader into the base version of DiGress to handle the phylogenetic graph encoding.
During preprocessing, each graph’s F matrix is converted to a sparse edge-list representation, providing a lightweight
method for storing edge information. Processed graphs are organized into small shards of 64 graphs and stored on disk.
Each shard contains the sparse edge-list representation (replacing £), X, and relevant metadata for each graph. During



training, graphs are loaded on-demand from their shards rather than loading the entire dataset into memory. When a
graph is requested, it is extracted from its shard, converted to the one-hot encoded format required by DiGress, and then
batched together with other graphs.

2.6 Training

We trained two 7.1 million parameter models using this modified version of DiGress and our synthetic training dataset.
The dataset was split to 80% train, 10% validation, 10% test. Both models were trained with cross-entropy loss for 500
epochs, with each sample going through 1000 diffusion steps. Parameters were chosen to mirror models that performed
well on similar mathematical graph structures in the original DiGress paper. The noise transition was varied between
models (see Table 3). Two options exist for this parameter: marginal and uniform, each corresponding to one of the
trained models. We refer to these as DiPhy ,,, and DiPhy,;, respectively. As noise is added to a clean graph G|, the
forward process utilizes a Markov transition matrix () to progressively corrupt the graph. Uniform transitions means
that (Q; makes each category (for both nodes and edges) equally likely as noise increases. Marginal transitions force
Q: to preserve the class distribution of nodes and edges from the training data to increase realism. The models were
trained using the pre-built PyTorch Lightning multi-GPU training framework from DiGress on four 32GB NVIDIA
V100 GPUs.

2.7 Evaluation

Because DiPhy is an unconditional, self-supervised model, we cannot evaluate the model’s accuracy using standard
supervised learning metrics, as there are no training labels. We developed customized test and validation metrics to
assess model performance. These metrics compare the distributions of generated graphs against test and validation
graphs. We collected the average and standard deviation of node and edge counts, along with node type composition
metrics and validity assessments. Tree validity was assessed by requiring graphs to pass four tests: (1) no cycles, (2)
exactly one root node with exactly one clone neighbor, (3) clone edges only connect clones or roots, and (4) mutation
edges only connect mutations and clones. All four tests must pass for a tree to be considered valid. A well-performing
model will minimize the difference between validation and test metrics. These metrics were calculated every 50 epochs,
along with negative log likelihood.

3 Results

Test Metric Test Dataset Uniform Marginal
num_graphs 196.0 1000.0 1000.0
mean_nodes 80.67 80.26 78.45
std_nodes 21.58 22.28 21.16
mean_edges 79.67 79.37 77.48
std_edges 21.58 22.40 21.19
mean_clone_fraction 0.0548 0.0332 0.0375
mean_mutation_fraction 0.9321 0.9535 0.9489
validity_pass_pct 100.0 88.1 92.8

Table 1: Test-time metrics comparing test dataset, with generated datasets from DiPhy,; and DiPhy ;. num_graphs: num-
ber of graphs in dataset, mean/std_nodes: mean/standard deviation of nodes in dataset, mean/std_edges: mean/standard
deviation of edges in dataset, mean_clone_fraction: mean fraction of nodes that are clone nodes, mean_mutation_fraction:
mean fraction of nodes that are mutation nodes, validity_pass_pct: percent of graphs that pass all four validity criterion.

3.1 Generative Performance

Both models achieved strong performance, particularly in tree validity, demonstrating that this framework successfully
generates structurally valid trees. The DiPhy models have been trained to remove noise at a given time step ¢. At test
time, DiPhy begins with random noise (dependent on the transition framework of uniform or marginal) and applies



its trained denoiser from ¢t = 0 to ¢ = 999, corresponding to 1,000 denoising steps, to generate the final graph that
is evaluated. This process is repeated 1,000 times to generate 1,000 sample graphs. It is important to note that this
generation process is not guided. We provide the model with noise and evaluate its ability to denoise that input into
graphs that are structurally sound. Table 1 outlines the results from the two models at test time.

The marginal transition model, DiPhy;,, performs best, generating 92.8% structurally valid phylogenies at inference.
DiPhy,; performs very closely to its marginal counterpart in nearly all metrics and still achieves a high percentage
of valid samples at 88.1 percent. However, the 4.7% validity increase represents a significant difference, clearly
establishing DiPhy ;,’s marginal transitions as the superior method for learning phylogenetic tree structures. Figure 4
illustrates the differences between DiPhy,, and DiPhy,; at inference.

Examples of valid graphs generated by DiPhy,, are shown in Figure 2a, displaying several graphs that were
generated. Since only one tumor type was simulated, the general motif of all generated samples follows a pattern
where the first clone node from the root contains numerous mutations and then branches outward in some cases. Figure
2b shows samples generated at test time that failed the validity check. Invalid samples tend toward errors in edge
connections, meaning that replacing invalid edges would correct the graph. From manual observation, the model
appears to have learned the root-clone rule, but further benchmarking is required to confirm this observation.

a)

Figure 2: Examples of graphs generated by DiPhy,, at test-time. Valid phylogenies are shown in (a), and invalid
phylogenies are shown in (b). Gray nodes are roots, bolder colored nodes are clones, and lighter versions of the bold
colors are mutations. Solid edges are parental, or clone edges, while dotted edges represent mutation edges.

3.2 Training

Training dynamics followed standard patterns. DiGress tracks the cross-entropy (CE) loss for the node, edge, and
global feature tensors (X, E, y, respectively). Global features represent properties that apply to the entire graph, such as
molecular weight for atomic datasets. The global tensor y is completely ignored to prioritize the structural learning of
DiPhy, which explains the choice of A = (5,0) (see Table 3). This vector represents the weighting for the total loss,
which is calculated as

lossoar = lossx + Ao lossg + Aq lossy

losSioral = lossx + 5 lossg.

Training and validation loss metrics initially decreased sharply, followed by clear convergence without overfitting
(see Figures 5 and 6). Additional validation metrics were tracked over validation epochs, with most following a similar
trend of sharp change during the initial epochs followed by largely stable dynamics thereafter. Exceptions can be
seen with the average number of nodes and the validity pass rate over epochs. The average number of nodes remains
stable around 75 and 82 total nodes for the two models, while the validity pass percentage gradually reaches its final
values without overfitting. Validation validity pass percentage reached 92.0% and 95.0% for DiPhy;; and DiPhy,,
respectively.



3.3 Inference Speed

A key motivation for this work was to increase inference speed, thereby increasing clinical viability for pipelines
like Mase-phi. Deep generative models are significantly faster on inference tasks compared to unsupervised model
methods, because parameters are optimized before inference. Though DiPhy cannot be compared to stardard methods
like PhyloWGS directly, it is important to gauge the generative speed at an early stage. Inference time was not directly
tracked, but though training logs, we can get a sense for the generative speed of our trained models. DiPhy,, spent
4:07, and DiPhy;; spend 4:22 at inference. Each model used a single NVIDIA V100 GPU with the task of generating
1,000 graphs, visualizing 100 of these graphs, and creating 20 GIF animations of the generative process, in batches of 8.
Visualization probably plays a large part in the long inference time, but this is still a promising start.

4 Discussion

In this work, we generated a synthetic dataset using a tumor simulator and trained an unconditional adapted graph
diffusion model, DiPhy, with this synthetic data. Two separate models, DiPhy,, and DiPhy;;, achieved accurate
generative capabilities, with DiPhy,, demonstrating particularly strong performance. This work establishes the
feasibility of deep generative approaches for tumor phylogeny reconstruction, potentially offering a faster and more
clinically viable alternative to traditional methods. While significant challenges remain, including the need for
conditional generation and enforcement of biological constraints, these results provide a promising foundation for
future development of deep learning-driven phylogenetic inference tools that could accelerate clinical decision-making
in precision oncology. The remainder of this section discusses future directions for this work.

4.1 Increasing Dataset Size

We generated a small-scale dataset using a single set of parameters with SISTEM. Future work should prioritize
generating a biologically diverse yet relevant dataset of hundreds of thousands of samples to improve generalizability.
Using a deep generative approach to this problem means that performance is directly correlated with the quality and
diversity of the training data. Further benchmarking would be needed to create a comprehensive simulated dataset,
especially when applying guided sampling. The same methodology can be used to generate additional raw data; all
that would be required are ample CPU resources and storage. It is important to note that this process is time-intensive,
requiring approximately one hour to generate a single tumor and approximately one minute to resample.

4.2 Further Adaptations

Immediate future work should focus on further testing this adapted framework. It is well established that increasing both
training dataset size and model size typically improves performance [12]. This principle can be applied to DiPhy by
expanding the dataset as mentioned above and incorporating additional graph-transformer layers. Furthermore, testing
smaller data subsets with variable model sizes provides valuable insight into the tradeoff between data complexity
and model capacity, enabling the development of resource-aware models that maximize accuracy. Additionally,
phylogeny-specific graph-level metrics should be tracked to ensure proper model development and validation [19].

4.3 Guided Sampling

While the diffusion prior can extract valid graph structures from pure noise, it lacks the capability to generate graphs
conditioned on specific input data. This is where guidance becomes essential, either through a secondary classifier model
or through built-in classifier-free guidance. This capability is necessary to progress from annotated bulk sequencing
data to a phylogeny, analogous to the approach used by PhyloWGS. The data generation framework developed in this
work contains paired read count data with all corresponding trees and can be used to train the built-in guidance model
included with DiGress. While some customization would be required, this represents the most promising next step
following the current work. Demonstrating the viability of guided sampling is a crucial milestone before allocating time
and resources to building a fully customized model from scratch.



4.4 Customized Architecture

DiGress serves as a foundation model for this work, though this approach involves some performance tradeoffs. Our
efforts focused on generating a synthetic dataset and encoding it in a way that enables the model to learn phylogenetic
structures. This design means that the rules governing phylogeny graphs are enforced purely through statistical learning
rather than explicit constraints. Consequently, DiPhy can produce invalid graphs, which still occurs in 8-12% of cases.
Now that we have demonstrated that a graph-transformer-based discrete diffusion model architecture can learn these
data representations through structure alone, future work should develop a customized encoding that explicitly enforces
phylogenetic and biological constraints when learning phylogeny distributions [2]. This customized model should then
be conditioned on bulk read count data, ultimately achieving the goal of a cost-aware, high-performing conditional
generative model for tumor phylogenies that relies on a single data source.

4.5 Use Cases

There are numerous use cases for both unconditional and conditional generative phylogeny reconstruction models. A
pretrained unconditional model could be finetuned, or further trained, with a set of unverified reconstructed patient
tumor phylogenies to create realistic distributions of patient data rooted in ground truth simulated data. These learned
distributions can then be used to generate new synthetic datasets of completely de-identified patient data, enabling
the creation of publicly available datasets for developing additional models and analyzing tumor phylogenies. This
capability would significantly expand accessibility to the field, which is currently limited by many private clinical
datasets. Another clear use case is to enhance clinical inference workflows, such as Mase-phi, with conditional
generative models. This advancement would enable further investigation of evolution-based methods for predicting
disease progression.

5 Code and Dataset Availability

All relevant code can be found at github.com/siddsabata/repo
Training dataset can be found at google drive link
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A Additional Tables

Parameter Value
nsites 3

epsilon 1x107?
min_detectable 500000
capacities 10000000

focal_driver_rate  0.0005
SNV _pass_rate 0.01

ncells_prim 10000
ncells_meta 5000
ncells_normal 2000
min_mut_fraction 0.05
coverage 100

Table 2: Simulation parameters used for SISTEM. nsites: number of anatomical sites including primary tumor, epsilon:
baseline site migration probability, min_detectable: number of cells required to terminate growth simulation at a site,
capacities: max number of cells (carrying capacity) of each site, focal _driver_rate: probability of acquiring driver focal
CNA per generation, SNV _pass_rate: probability of acquiring passenger SNV per generation, ncells_prim: number
of cells to sample from primary tumor, ncells_meta: number of cells to sample from metastatic sites, ncells_normal:
number of cells to dilute primary site with, min_mut_fraction: minimum clonal frequency required to keep clone,
coverage: average number of reads which cover any base pair in genome.

Parameter Value
diffusion steps 1000

)\train <5’ O>

batch size 8

epochs 500

learning rate 0.0002
weight decay 1.00 x 10712
optimizer AdamW

n_layers (graph transformer layers) 8

Table 3: Model hyperparameters and architectural configuration.



B Additional Figures
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Figure 3: Distribution of entire synthetic dataset before train/val/test split.
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Figure 4: Showcasing generative processes of DiPhy,, (a), and DiPhy; (b) over time where T' = 1000.
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nodes, Mean clone fraction: mean fraction of nodes that are clone nodes, Validity pass %: percent of generated graphs
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