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We successfully learned clonal phylogeny graph structures 
with a discrete diffusion model and simulated data
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Summary



Clones: Tumor cell subpopulations
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Clonal Phylogenies



Clones: Tumor cell subpopulations
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Clonal Phylogenies

Phylogenies: Evolutionary 
trees

https://amphibiaweb.org/taxonomy/

https://amphibiaweb.org/taxonomy/


✅ Cheap and non-invasive 

❓ Noisy and sparse 
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Circulating Tumor DNA (ctDNA)

https://blog.dana-farber.org/insight/2023/06/what-is-ctdna-and-do-i-need-mine-tested/

https://blog.dana-farber.org/insight/2023/06/what-is-ctdna-and-do-i-need-mine-tested/


● Understanding tumor evolution → improved prediction

● Setting: Predicting patient relapse 

● Predict relapse with circulating tumor DNA (ctDNA)? 
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Clonal Phylogenies: Use Cases
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Use Case: Mase-phi

https://doi.org/10.1093/bioinformatics/btaf145

https://doi.org/10.1093/bioinformatics/btaf145
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Use Case: Mase-phi
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Phylogeny Distribution

https://doi.org/10.1093/bioinformatics/btaf145

https://doi.org/10.1093/bioinformatics/btaf145


f(read counts) → phylogeny tree

P(phylogeny | read counts)

● Current methods learn predefined parameters at test-time 
with Bayesian MCMC based approaches 

● Instability → bootstrapping
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Phylogeny Reconstruction



● Deep generative models use neural networks to learn and 
sample from complex probability distributions

● Some work has been done in applying generative modeling 
to learning phylogenies

○ bmVAE

○ PhyloVAE
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Related Prior Work

https://doi.org/10.1093/bioinformatics/btac790 
https://doi.org/10.48550/arXiv.2502.04730

https://doi.org/10.1093/bioinformatics/btac790
https://doi.org/10.48550/arXiv.2502.04730


● Generative models great at learning data distributions

● Training-time optimization → faster inference

● Learn how to turn noise into a valid output
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Diffusion Models
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Forward Diffusion

https://towardsdatascience.com/diffusion-models-made-easy-8414298ce4da/

https://towardsdatascience.com/diffusion-models-made-easy-8414298ce4da/
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Reverse Diffusion

https://towardsdatascience.com/diffusion-models-made-easy-8414298ce4da/

https://towardsdatascience.com/diffusion-models-made-easy-8414298ce4da/
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Training Diffusion Models

https://thenounproject.com/browse/icons/term/neural-network/
https://doi.org/10.48550/arXiv.2006.11239

https://thenounproject.com/browse/icons/term/neural-network/
https://doi.org/10.48550/arXiv.2006.11239
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Unconditional Diffusion

�� 
𝑋T

𝑋0pθ(𝑋t-1 | 𝑋t)
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Unconditional Diffusion
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Conditional Diffusion (Guidance)

�� 
𝑋T

��
𝑋0

…

pθ(𝑋t-1 | 𝑋t, 
y)

y = “Santa”
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Goal: Unconditional Phylogeny Generation

�� 
𝑋T

𝑋0

…

pθ(𝑋t-1 | 𝑋t)
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Model selection

Training Data

Encoding

Training 
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Methods
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Model Selection: DiGress

https://doi.org/10.48550/arXiv.2209.14734

https://doi.org/10.48550/arXiv.2209.14734
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Model Selection: DiGress

https://doi.org/10.48550/arXiv.2209.14734

● Graph transformer based implementation

● Provides generalized framework we can adapt

https://doi.org/10.48550/arXiv.2209.14734


● Ground truth tumor phylogenies from nature are impossible 
→ simulated data

● SISTEM simulates tumor growth, metastasis, and DNA 
sequencing 

○ 1: Growth until minimum detectable population size

○ 2: Sample cells and sequence
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Training Data



● Provides ground truth trees paired with bulk sequencing 
read counts 

○ Only ground truth trees used in this work

○ Paired read counts required for conditional generation 
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Training Data



1,967 tumor phylogenies used for training

● One single parameter set
● 800 unique tumors 
● 3 resamples for each 
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Training Data
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Encoding



● DiGress supports graphs with undirected edges and 
single class nodes
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Encoding



● DiGress supports graphs with undirected edges and 
single class nodes
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Encoding
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Edge Encoding
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Encoding Tensor
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● Two 7.1 million parameter models trained 

○ DiPhyM: marginal noise transition 

■ Preserves class distribution of nodes and edges during noising process

○ DiPhyU: uniform noise transition 

○ All other hyperparameters identical 
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Training
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Marginal vs. Uniform Inference
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Uniform Inference



● Compare distributions

● Node + edge statistics 

● Validity test 

○ (1) No cycles, (2) exactly one root node with one clone neighbor, 
(3) clone edges only connect to clones/root, (4) mutation edges 
only connect mutation nodes to clone nodes
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Evaluation
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Generative Performance
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DiPhyM Performs Best
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Example Graphs



62

Example Graphs



63

Invalid Edges



64

Invalid Edges



65

Invalid Edges



● Cannot directly compare with traditional methods 

● 1,000 graphs, 100 visualized, 20 animated

● ~4 hours total with a single NVIDIA 32GB V100 GPU
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Inference Speed
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Discussion
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Use cases 
🩺 



● Deep generative approach for phylogeny reconstruction

● Developed synthetic training dataset and encoding

● Showed 7.1 million parameter diffusion model can learn 
phylogeny structures 

● Initial, proof of concept 
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Conclusion
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