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Summary

We successfully learned clonal phylogeny graph structures
with a discrete diffusion model and simulated data



Clonal Phylogenies




Clonal Phylogenies

| cells (Root)

Root

Phylogenies: Evolutionary
trees
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https://amphibiaweb.org/taxonomy/

Circulating Tumor DNA (ctDNA)

Cheap and non-invasive

? Noisy and sparse



https://blog.dana-farber.org/insight/2023/06/what-is-ctdna-and-do-i-need-mine-tested/

Clonal Phylogenies: Use Cases

. Understanding tumor evolution — improved prediction
« Setting: Predicting patient relapse

. Predict relapse with circulating tumor DNA (ctDNA)?
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Phylogeny Distribution
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Phylogeny Reconstruction
f(read counts) — phylogeny tree

P(phylogeny | read counts)

. Current methods learn predefined parameters at test-time
with Bayesian MCMC based approaches

. Instability — bootstrapping
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Related Prior Work

. Deep generative models use neural networks to learn and
sample from complex probability distributions

. Some work has been done in applying generative modeling
to learning phylogenies

o bmVAE

- PhyloVAE

17


https://doi.org/10.1093/bioinformatics/btac790
https://doi.org/10.48550/arXiv.2502.04730

Diffusion Models

. Generative models great at learning data distributions
. [raining-time optimization — faster inference

. Learn how to turn noise into a valid output
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Forward Diffusion

q(xg|x_1)

<4 ------ Forward Diffusion
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Reverse Diffusion

Po(X¢—1]x¢)

-—=====p Reverse Diffusion
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Training Diffusion Models
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Unconditional Diffusion

Py(X, | X) X
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Unconditional Diffusion
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Unconditional Diffusion

Py(X, | X) X
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Unconditional Diffusion
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Conditional Diffusion (Guidance)

y = “Santa”
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Goal: Unconditional Phylogeny Generation
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Methods

Model selection
Training Data
Encoding

Training
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Model Selection: DiGress
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Model Selection: DiGress
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Model Selection: DiGress

Gt—l G

GT Gt Q_t
4—

O'f/...."poﬁ
®.

WIRY.

O

T T

32


https://doi.org/10.48550/arXiv.2209.14734

I\/Iodel Selection: DiGress
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I\/Iodel Selection: DiGress
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I\/Iodel Selection: DiGress
G

Vel .:;; Oe

G
po(G|G*)
. Graph transformer based implementation

o (
bo(G")

. Provides generalized framework we can adapt
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Training Data

. Ground truth tumor phylogenies from nature are impossible
— simulated data

. SISTEM simulates tumor growth, metastasis, and DNA
sequencing

o 1. Growth until minimum detectable population size

o 2. Sample cells and sequence
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Training Data

Root

e

» Provides ground truth trees paired with bulk segquencing
read counts

o Only ground truth trees used in this work

o Paired read counts required for conditional generation
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Training Data

1,967 tumor phylogenies used for training

. One single parameter set
« 300 unique tumors
« 3 resamples for each
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Tumor

Clone B cells Normal cells (Root)

Clone C cells Clone A cells

Encoding
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Encoding

« DiGress supports graphs with undirected edges and
single class nodes
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Encoding

Tumor

« DiGress supports graphs with undirected edges and
single class nodes
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Node Encoding
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Node Encoding
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Node Encoding
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Node Encoding
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Edge Encoding
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Edge Encoding
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Edge Encoding
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Edge Types

0: None
1: Clone
2: Mutation

Encoding Tensor




Training

wo 7.1 million parameter models trained

o DiPhy,,: marginal noise transition

m Preserves class distribution of nodes and edges during noising process

o DiPhy,: uniform noise transition

o All other hyperparameters identical
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b)

Marginal vs. Uniform Inference
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Marginal Inference
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Uniform Inference
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Evaluation
« Compare distributions
. Node + edge statistics

. Validity test

o (1) No cycles, (2) exactly one root node with one clone neighbor,
(3) clone edges only connect to clones/root, (4) mutation edges
only connect mutation nodes to clone nodes
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Generative Performance

Test Metric Test Dataset Uniform Marginal
num_graphs 196.0 1000.0 1000.0
mean_nodes 80.67 80.26 78.45
std_nodes 21.58 22.28 21.16
mean_edges 79.67 79.37 77.48
std_edges 21.58 22.40 21.19
mean_clone_fraction 0.0548 0.0332 0.0375
mean_mutation_fraction 0.9321 0.9535 0.9489

validity pass_pct 100.0 88.1 92.8
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DiPhy,, Performs Best

Test Metric Test Dataset Uniform Marginal
num_graphs 196.0 1000.0 1000.0
mean_nodes 80.67 80.26 78.45
std_nodes 21.58 22.28 21.16
mean_edges 79.67 79.37 77.48
std_edges 21.58 22.40 21.19
mean_clone_fraction 0.0548 0.0332 0.0375
mean_mutation_fraction 0.9321 0.9535 0.9489

validity_pass_pct 100.0 88.1 1 92.8 |
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Example Gra
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Example Graphs

b)
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b)

Invalid Edges
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Invalid Edges

b)
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b)

Invalid Edges
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Inference Speed

« Cannot directly compare with traditional methods
. 1,000 graphs, 100 visualized, 20 animated

. ~4 hours total with a single NVIDIA 32GB V100 GPU
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Discussion
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Discussion
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Discussion
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Discussion
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Use cases

X4
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Conclusion
Deep generative approach for phylogeny reconstruction
Developed synthetic training dataset and encoding

Showed 7.1 million parameter diffusion model can learn
phylogeny structures

Initial, proot of concept
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